Abstract

SummaryClassical stability theory predicts the critical velocity for a miscible fluid to be stabilized by gravity forces. This theory was tested for surfactant floods with ultralow interfacial tension (IFT) and was found to be optimistic compared with both laboratory displacement experiments and fine-grid simulations. The inaccurate prediction of instabilities on the basis of available analytical models is because of the complex physics of surfactant floods. First, we simulated vertical sandpack experiments to validate the numerical model. Then, we performed systematic numerical simulations in two and three dimensions to predict formation of instabilities in surfactant floods and to determine the velocity required to prevent instabilities by taking advantage of buoyancy. The 3D numerical grid was refined until the numerical results converged. A third-order total-variation-diminishing (TVD) finite-difference method was used for these simulations. We investigated the effects of dispersion, heterogeneity, oil viscosity, relative permeability, and microemulsion viscosity. These results indicate that it is possible to design a very efficient surfactant flood without any mobility control if the surfactant solution is injected at a low velocity in horizontal wells at the bottom of the geological zone and the oil is captured in horizontal wells at the top of the zone. This approach is practical only if the vertical permeability of the geological zone is high. These experiments and simulations have provided new insight into how a gravity-stable, low-tension displacement behaves and in particular the importance of the microemulsion phase and its properties, especially its viscosity. Numerical simulations show high oil-recovery efficiencies on the order of 60% of waterflood residual oil saturation (ROS) for gravity-stable surfactant floods by use of horizontal wells. Thus, under favorable reservoir conditions, gravity-stable surfactant floods are very attractive alternatives to surfactant/polymer floods. Some of the world's largest oil reservoirs are deep, high-temperature, high-permeability, light-oil reservoirs, and thus candidates for gravity-stable surfactant floods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call