Abstract
Abstract Large eddy simulation data of a bluff-body stabilized flame are analyzed using spectral proper orthogonal decomposition (SPOD) to investigate: (i) the role of flame-vortex interactions in the dominant flow dynamics, and (ii) how the proper choice of the cross-spectral density (CSD) defining SPOD can assist in identifying the underlying dynamics. Bluff-body flame holders aim to achieve stable flames under lean premixed conditions to minimize pollutant emissions. The recirculation region induced by the body promotes the mixing of hot combustion products with unburnt gases, preventing the global blowoff. However, the coupling between the shear layers and flame-induced vorticity sources can result in large flow structures that either contribute to increased flame stability or exhibit features typical of the early stages of flame blowout. SPOD is a data-driven technique remarkably powerful in extracting low-dimensional models. For each frequency, it computes a basis of orthogonal modes that maximizes the content of a predefined CSD in the leading modes. By choosing physically-relevant variables to construct the CSD, different physics can be explored, which is used here to investigate the coupled dynamics between the flame-induced baroclinic torque, vortical structures, and the temperature field. The results show that the vorticity and temperature fields exhibit low-dimensional dynamics characterized by a narrowband frequency and its harmonics; these dynamics are varicose oscillations of the flame region, governed by the baroclinic torque. Sinuous oscillations typical of wake instability for non-reactive flows are also present, suggesting a competition between them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.