Abstract

A computational study is presented of the complex flow through a staggered herringbone micromixer (SHM), which utilises sequences of asymmetrical herringbone grooves in cycles where a set of topologically similar grooves represent a half cycle. It was analysed using finite-element (method) based software to elucidate the fluid flow within the channel and characterise the effect of the grooves at moving fluid across the channel thus creating non-axial fluid movement. Three separate physical systems were modelled: a channel containing a single groove, a half cycle of infinite grooves and an infinite system with one groove per half cycle. A range of groove heights were investigated for the single groove for the Reynolds number range 0–15 to identify the mechanics through which fluid is transported across the channel by the grooves, the effect that inertial and viscous forces have on the process and to identify a groove height range for optimised cross channel fluid transfer. The flow field within the grooves at various heights was analysed and their relationship with non-axial flow within the bulk channel identified. The culminating effect of increasing grooves per half cycle on their ability to transport fluid across the channel is analysed by comparing the entrainment of fluid into and across the groove for both a single and infinite grooves. The maximum increase in fluid entrainment per groove for the addition of extra grooves to a cycle was found to be 14%. The helicity (or swirl) of the flow within the channel is found to be small for all three systems, while increased helicity within the flow was found to correspond to an increase in energy dissipation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.