Abstract

A novel Computational Fluid Dynamics (CFD) method utilizing Smoothed Particle Hydrodynamics (SPH) has been developed and applied to a simulation of flows in small hydropower systems. The simulation of the flow through a gravitational vortex turbine (GVT) small hydropower system where the flow is directed to a circular basin with a vertical-axis turbine, harnessing the rotational energy of the vortex formed to drive the turbine. Two modes of Fluid-Structure Interactions (FSI) were tested with identical flow conditions to evaluate the potential of this method to simulate complex FSI scenarios. It was found that simulation results for both one-way and two-way interactions produced reasonable results. The two-way interaction result proved to reflect more accurate FSI scenarios, but more studies are needed to provide validation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.