Abstract

We present an investigation of the effects of uniaxial stress on the conduction band alignment of type II GaAs/AlAs short period superlattices using photoluminescence (PL) spectroscopy. In the absence of pressure, the conduction band ground state derives from the longitudinal X states in the AlAs layers, whereas at higher pressures the transverse X states shift to a lower energy. This crossing is clearly visible in the PL, and the shift in the transition energies is used to determine a value for the tetragonal shear deformation potential of the X point of AlAs, Ξ X 1, of 6.9 ± 0.6 eV. This is compared with existing estimates, and is used to confirm a value of 23 meV as the ambient pressure strain dependent splitting between the longitudinal and transverse X states. The ambient pressure confinement splitting is then investigated by using a linear extrapolation of the pressure shift in the transverse X features. This leads to the first estimation of the zero pressure state alignment from samples having a conduction band ground state of longitudinal X character, along with large confinement energies. Comparisons with the Kronig-Penney model suggest that the current value of the transverse effective mass of AlAs may need to be reassessed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.