Abstract

In order to investigate the concentration dependence of mass transfer coefficients in RPLC, experimental breakthrough curves obtained by staircase frontal analysis (FA) were fitted to the simplified models such as multiplate (MP) model, equilibrium dispersive (ED) model, and transport model, and the sophisticated models such as lumped pore diffusion (POR) model and general rate (GR) model. The MP model was used to obtain the initial guesses of the parameters of the ED and the transport models. Then the best values were obtained by minimizing the differences between theoretical and experimental values with a nonlinear fitting procedure. The values of the parameters of the POR and the GR models can be calculated by using the expressions derived from the plate height equations, which was further validated by using the fitting method. It was found that the mass transfer coefficients would depend on the solute concentration. This can be ascribed to the surface diffusivity, which correlates with the concentration and is lumped into the mass transfer coefficients for both simplified and sophisticated models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call