Abstract

This study was performed to understand the behavior of poorly compressible paracetamol powder using a compaction simulator (CS), equipment that records data during the compaction process. The aim was to investigate the compressibility of paracetamol tablets using a dry granulation (slugging) process, with different formulation compositions. Formulations were prepared to observe the effect on compressibility with two different lactose-based fillers, Flowlac®100 and Granulac®70, and a binder, Kollidon® K90. In each combination, a total of four formulations were prepared with paracetamol to filler ratios of 1:1 and 0.8:1. Tablets were produced by single punch (11.28 mm) CS at six different pressures (152, 210, 263, 316, 400, and 452 MPa). During compression, upper punch displacement and force data were produced by the CS equipment. The compressed tablets were tested for hardness, thickness, and weight variation and compared with each other. All formulations reached maximum tensile strength at compaction pressures between 263 and 316 MPa. In the formulations without binder, those containing Granulac®70 had higher tensile strength than those containing Flowlac®100 at both filler ratios. The results obtained indicated that the addition of binder to the formulations (F-45-1, F-45-2, F-50-3, and F-50-4) improved the compressibility of paracetamol. Formulation F-45-2, containing Flowlac®100 and binder, showed better compressibility at 2.9 MPa tensile strength. Data from the CS were used to compare Young's modulus and work of compaction on selected formulations (F-45-1 and F-45-2). The proposed lactose-based filler, Flowlac®100, with low pressure can be successfully applied for improving the compressibility of paracetamol. An optimum formulation can be designed with smaller amounts of materials using a compaction simulator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.