Abstract

The effect of the cone boundary on collapse of the laser-induced bubble is investigated under the assumption of virtual plane, and the methods of shadow photography, optical beam deflection and simulation are also used to obtain the effect of cone angle on the bubble dynamics. The results indicate that the effects of the cone angle on the shape of bubble, collapse time and the formation of liquid jet are obvious. The degree of departure of bubble shape from spherical shape and the collapse time are found to increase with the increase of cone angle, and the valid liquid jet is able to form at a lager cone angle. The experimental value and theoretical value of collapse are in good agreement with each other, and the assumption of virtual plane and the modification of dimensionless distance parameter proposed in this study are valid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.