Abstract
Orbital forging is a metal forming process in which one of the dies performs a complex rocking motion. It ensures reduction in required load and allows for the cold forming of a workpiece. One of the mechanical parts formed by means of this technology is a bevel gear. However, a numerical analysis of orbital forging bevel gears is very difficult to perform due to the complex rocking motion of the die, which is confirmed by numerous works investigating the orbital forging process. In the present work, investigation results of the cold orbital forging of aluminum alloy bevel gears are presented. In contrast to other works devoted to the process, this study proposes a new procedure for forming bevel gears and the workpiece used has a shape which is different from the previously applied ones. The obtained results apply to both theoretical and technological aspects of orbital forging. The FEM simulation results have been successfully verified in laboratory conditions using the industrial PXW-100A press.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.