Abstract

Two reversed-phase/anion-exchange mixed-mode stationary phases for high-performance liquid chromatography using calixtriazines as chromatographic ligands were investigated with Tanaka test solutes, monosubstituted benzenes, aromatic positional isomers, and inorganic anions. Calixtriazine as a chromatographic ligand has been reported previously, but the benzylated nitrogen-bridged calixtriazine-bonded silica gel reported in this study is new. The experimental data showed that the calixtriazine platform is a unique chromatographic selector because its multiple active sites are available for different solutes and its chromatographic selectivity could be tuned by introducing substituent on the bridging nitrogen atoms present in the calixtriazine matrix. The synergistic effects of aromatic rings, nitrogen atoms, benzyl groups, and tunable cavity in the host molecule influenced the separation selectivity by multiple retention mechanisms. Such hybrid stationary phases provide more versatility and have great potential in the analysis of complex samples. Moreover, the synthetic protocols presented herein may provide an alternative understanding on macrocyclic host-guest chemistry, leading to new and selective separation media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.