Abstract

The influence of burner aerodynamics on the characteristics of the flame has been studied by means of detailed measurements in a laboratory gas-fired furnace. The distribution of air between two concentric injections and the swirl numbers of both air streams were systematically varied. As a result, a broad range of flames were obtained. The spatial distribution of temperature and species revealed important differences in the configuration of the flame, for which plausible interpretations are proposed. Air-staged flames led to reductions in NO x emissions down to one third. The fluctuations in pressure and heat release (estimated from OH* chemiluminescence) were characterised in detail. Their standard deviations varied widely with the burner settings, reaching the highest values in some regimes close to flame extinction and also for high staging ratios. Analysis in the frequency domain revealed some characteristic peaks in the pressure spectra, some of them associated with resonant modes of the combustion chamber and the burner. Cross-correlations between the pressure and chemiluminescence signals indicated the onset of thermo-acoustic instabilities for highly air-staged flames, but not for non-staged regimes. This is attributed to the partial premixing achieved before the second combustion stage. The results confirm that the Rayleigh index is related to the magnitude of the fluctuations but, for the cases explored, the threshold associated with the onset of thermo-acoustic coupling might be different depending on the degree of premixing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.