Abstract

Carbonization experiments of hybrid poplar samples were performed in a thermogravimetric (TG) analyzer to investigate the effect of carbonization conditions, such as heating rate, particle size and sweep gas flow rate on the biochar yield. During carbonization, samples were heated from room temperature to the temperature of 723 K in an inert atmosphere. A statistical design technique was applied by using a two-level factorial design matrix to elucidate the experimental results. It was obtained that the biochar yields of samples were changed depending on the carbonization conditions. Empirical relations between the biochar yield and the carbonization conditions were developed. Biochar yields of samples were decreased with the increasing heating rate and sweep gas flow rate and increased with the increasing particle size. Kinetic analysis of the carbonization TG curves was achieved by using three different methods of calculation; also, 19 different model equations of possible solid-state rate controlling mechanisms were considered. A computer program in BASIC which enables regression analysis was used to calculate kinetic parameters from experimental TG data. It was observed that the carbonization conditions and the method of calculation influenced the kinetic results obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.