Abstract

For practical applications of superconducting materials in applied magnetic fields, artificial pinning centres in addition to natural ones are required to oppose the Lorentz force. These pinning centres are actually various types of defects in the superconductor matrix. The pinning centres can be categorised on their dimension (volume, surface, or point) and on their character (normal cores or Δκ cores).We have used the Dew Hughes approach to determine the types of pinning centres present in various samples, with various thicknesses, temperatures and nanostructured additions to the superconducting matrix. Results show that normal surface pinning centres are present throughout almost all the samples, as dominant pinning mechanism. Such 2D extended pinning centres are mainly due to dislocations, grain boundaries, nanorods. Strong normal point pinning centres were found to be common in BZO doped YBCO samples. Other types of pinning centres, in various (minor) concentrations were also found in some of the samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call