Abstract
Equivalent bulk strength of the interface between p-Si/n-GaAs bonded through the surface activated bonding (SAB) method is found. The interface current was extensively investigated. Nonideal behavior of the pn junction current is found to be due to the tunneling current between the conduction band and valence band across the transition region associated with band gap states. Interface current decreases with increasing sputtering time and energy and vice versa. Irradiation time and energy dependent behavior indicates that the accumulation of radiation induced defects associated with the doping controls the interface current of p-Si/n-GaAs. Moreover, strong impact of the exposure to an ultrahigh vacuum atmosphere of the activated surfaces on the interface current of p-Si/p-Si is found. Finally it can be suggested that a laser diode can be fabricated by the bonding between p-Si and n-GaAs through the SAB method, because of the achievement of equivalent bulk strength of the interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.