Abstract

It was reported that bovine α-lactalbumin (BLA) as an important whey protein can be utilized as valuable vehicle for metal ions. The goal of this study was to investigate the interaction of BLA with bisdemethoxycurcumin (BDMC), Diacetylcurcumin (DAC), and diacetylbisdemethoxycurcumin (DABC) as three bioactive compounds by fluorescence quenching measurements and docking studies. It was observed that these ligands come closer to tryptophan residues and quench their emission without any change in their micro region polarity. The Stern–Volmer equation which is the best model to provide information about the interaction between small bioactive molecules and proteins was used to obtain the binding constants and the binding stoichiometry. Information about the extent of resonance energy transfer and Förster’s distance between donor and acceptor was estimated. Thermodynamic parameters confirmed that the final BDMC–BLA complex was stabilized by hydrogen bonds, whereas the final DABC–BLA and DAC–BLA complexes were stabilized by hydrophobic bonds which are in accordance with their chemical structures. Both the synchronous and docking studies verified that theTrp-26 which is the most exposed Tryptophan residue has the most contribution in the binding process. The Förster’s distances between bound ligands and tryptophans were in agreement with the measured distances by docking studies. The obtained achievements confirmed that there are considerable binding interactions between these curcuminoids and BLA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call