Abstract

Within this paper we investigate the Bernoulli model for random secondary structures of ribonucleic acid (RNA) molecules. Assuming that two random bases can form a hydrogen bond with probability p we prove asymptotic equivalents for the averaged number of hairpins and bulges, the averaged loop length, the expected order, the expected number of secondary structures of size n and order k and further parameters all depending on p. In this way we get an insight into the change of shape of a random structure during the process 1 → p 0 . Afterwards we compare the computed parameters for random structures in the Bernoulli model to the corresponding quantities for real existing secondary structures of large subunit rRNA molecules found in the database of Wuyts et al. That is how it becomes possible to identify those parameters which behave (almost) randomly and those which do not and thus should be considered as interesting, e.g., with respect to the biological functions or the algorithmic prediction of RNA secondary structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.