Abstract
In this paper, we consider the problem of a mixed-mode crack embedded in an infinite medium made of a functionally graded magneto–electro-elastic material (FGMEEM) with the crack surfaces subjected to magneto–electro-mechanical loadings. Eringen’s non-local theory of elasticity is applied to obtain the governing magneto–electro-elastic equations. To make the analysis tractable, it is assumed that the magneto–electro-elastic material properties vary exponentially along a perpendicular plane to the crack. Using Fourier transform, the resulting mixed-boundary value problem is converted into four integral equations, in which the unknown variables are the jumps of mechanical displacements, electric and magnetic potentials across the crack surfaces. To solve the integral equations, the jumps of displacements and electric and magnetic potential across crack surfaces are directly expanded in a series of Jacobi polynomials and the resulting equations are solved using the Schmidt method. Unlike classical magnetic, electric and elasticity solutions, it is found that no mechanical stress, electric displacement and magnetic flux singularities are present at the crack tips. This enables the use of the maximum stress as a fracture criterion. The primary objective of this study is to investigate the effects of crack length, material gradient parameter describing functionally graded materials and lattice parameter on the mechanical stress, magnetic flux and electric displacement field near crack tips.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.