Abstract

Chemical control is an important method for tackling crop diseases. Clarifying the antibacterial mechanisms of bactericides is useful for developing new bactericides and for continuous plant disease control. In this study, the antibacterial mechanism of a novel bactericide, dioctyldiethylenetriamine (Xinjunan), which affects adenosine triphosphate (ATP) synthesis, was investigated. The results of an in vitro inhibition activity assay showed that dioctyldiethylenetriamine inhibited the growth of a variety of plant pathogenic bacteria, especially that of Xanthomonas spp. Scanning electron microscopy demonstrated that dioctyldiethylenetriamine caused cell distortion and rupture. To investigate the molecular mechanism underlying the antibacterial effect of dioctyldiethylenetriamine, transcriptome sequencing (RNA-seq) was performed for Xanthomonas oryzae pv. oryzae (Xoo, PXO99A) treated with dioctyldiethylenetriamine, which has strong antibacterial effects against xanthomonads. The results showed that differentially expressed genes were enriched mainly in the oxidative phosphorylation and tricarboxylic acid (TCA) cycle pathways after treatment. Moreover, the dioctyldiethylenetriamine treatment exhibited reduction in enzyme activities in the TCA cycle, decreased intracellular nicotinamide adenine dinucleotide and ATP contents, and increased accumulation of reactive oxygen species. In addition, dioctyldiethylenetriamine exhibited an inhibitory effect on the growth of other bacterial pathogens by reducing ATP synthesis. This is the first report of the mechanism by which dioctyldiethylenetriamine inhibits ATP synthesis by affecting oxidative phosphorylation and TCA cycle pathways in bacteria. © 2023 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call