Abstract

A more precise numerical simulation of sheet metal forming processes leads to a demand for more detailed material characterisation. Hence, it is advisable to consider the strain rate reliant and anisotropic material characteristics. There are various common sheet metals that have beside of an anisotropic a more or less distinct strain rate dependent material behaviour. With regard to these material characteristics, for a more detailed numerical prediction of a sheet metal forming process, it is necessary to include the aspect of deformation velocity. A characterisation of the strain rate dependent hardening behaviour for the two common sheet metals DC04 and AA5182-O is performed under tensile as well as shear load and their behaviour is compared after v. Mises equivalent stress and strain. The two strain rate models from Norton-Hoff and Tanimura are calibrated on basis of the experimental data and their applicability for the investigated materials is evaluated. The calibration of the strain rate sensitive models showed for both materials a very good comparability, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.