Abstract

The macroscopic critical resolved shear stress (CRSS)τ of 9 body-centred cubic (BCC) and 5 face-centred cubic (FCC) metals has been found to vary with temperatureT in the range 0 to 300 K as given by: lnτ=A − BT, whereA andB are positive constants. Theτ−T data have been analysed within the framework of a kink-pair nucleation (KPN) model of plastic flow in crystals. The microscopic parameters of the unit activation process of yielding, e.g. the initial length of the glide dislocation segment, the critical height of the kink-pair nucleated in it, the activation volume associated with the CRSS, and the binding energy per interatomic spacing along the glide dislocation in the slip plane etc., have been evaluated. A consistent picture of the dislocation kinetics involved in the yielding of BCC and FCC metals emerges, which is adequately described by the KNP model of plastic flow in crystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.