Abstract

The Front Surface Acceleration (FSA) obtained in Laser Ion Source (LIS) systems is one of the most interesting methods to produce accelerated protons and ions. We implemented a LIS to study the electric field responsible for the ion acceleration mechanisms. A high impedance resistive probe was used to map the electric potential inside the chamber, near the target. We detected the time resolved profiles of the electric potential moving the probe from 4.7cm to 6.2cm with respect to the main target axis. The corresponding electric field depends on the distance x as 1/xα with α∼1.8. We suggest that the electric field strength stems from the contribution of an electrostatic and an induced field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.