Abstract

Abnormal nasal aerodynamics or trigeminal functions have been frequently implicated in the symptomology of empty nose syndrome (ENS), yet with limited evidence. Individual computed tomography (CT)-based computational fluid dynamics (CFD) was applied to 27 ENS patients to simulate their nasal aerodynamics and compared with 42 healthy controls. Patients' symptoms were confirmed with Empty Nose Syndrome 6-item Questionnaire (ENS6Q), 22-item Sino-Nasal Outcome Test (SNOT-22), and Nasal Obstruction Symptom Evaluation (NOSE) scores. Nasal trigeminal sensitivity was measured with menthol lateralization detection thresholds (LDTs). ENS patients had significantly lower (∼25.7%) nasal resistance and higher (∼2.8 times) cross-sectional areas compared to healthy controls (both p < 0.001). Despite inferior turbinate reductions, CFD analysis demonstrated that ENS patients had increased airflow concentrated in the middle meatus region (66.5% ± 18.3%) compared to healthy controls (49.9% ± 15.1%, p < 0.0001). Significantly less airflow (25.8% ± 17.6%) and lower peak wall shear stress (WSS) (0.58 ± 0.24 Pa) were found in the inferior meatus (vs healthy: 36.5% ± 15.9%; 1.18 ± 0.81 Pa, both p < 0.05), with the latter significantly correlated with the symptom scores of ENS6Q (r = -0.398, p = 0.003). Item-wise, complaints of "suffocation" and "nose feels too open" were also found to be significantly correlated with peak WSS around the inferior turbinate (r = -0.295, p = 0.031; and r = -0.388, p = 0.004, respectively). These correlations were all negative, indicating that less air-mucosal stimulations resulted in worse symptom scores. ENS patients (n = 12) also had impaired menthol LDT when compared to healthy controls (p < 0.0001). This is the first CFD examination of nasal aerodynamics in a large cohort of ENS patients. The results indicated that a combination of loss of neural sensitivity and poorer inferior air-mucosal stimulation may potentially lead to ENS symptomology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call