Abstract

In this paper, we applied the Langevin dynamical model to investigate the different aspects of the [Formula: see text]O+[Formula: see text]Pt reaction. Elongation and orientation degree of freedom ([Formula: see text] coordinate) which are the first and second dimensions of dynamical calculations, are presented here. Fission time, fission cross-section, pre-scission neutron multiplicity, and fission probability were calculated using one- and two-dimensional Langevin equations. Also, anisotropy of fission-fragments angular distribution has been investigated based on the transition state model, one- and two-dimensional Langevin dynamical models. It was found that by adding the orientation degree of freedom to calculations, the fission time and pre-scission neutrons multiplicity increases whereas fission cross-section, and fission probability decreases. The two-dimensional dynamical calculations are a better match to the experimental data than the one-dimensional dynamical calculations, when using nominal values for the reduced dissipation coefficient and shape-dependent level density parameter. However, if model parameters are adjusted to reproduce the fission cross-section data, then both the one- and two-dimensional models give a satisfactory match to the fission fragment anisotropy data. Nonequilibrium [Formula: see text] distributions in the dynamical model can better explain the experimental anisotropy of the angular distribution of fission-fragments with respect to the equilibrium [Formula: see text] distribution in saddle and scission point transition state models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.