Abstract

The effect of terminal groups on the electron transport through metal-molecule-metal system has been investigated using nonequilibrium Green's function (NEGF) formalism combined with extended Huckel theory (EHT). Au-molecule-Au junctions are constructed with borazine and BCN unit structure as core molecule and sulphur (S), oxygen (O), selenium (Se) and cyano-group (CN) as terminal groups. The electron transport characteristics of the borazine and BCN molecular systems are analyzed through the transmission spectra and the current-voltage curve. The results demonstrate that the terminal groups modifying the transport behaviors of these systems in a controlled way. Our result shows that, selenium is the best linker to couple borazine to Au electrode and oxygen is the best one to couple BCN to Au electrode. Furthermore, the results of borazine systems are compared with that of BCN molecular systems and are discussed. Simulation results show that the conductance through BCN molecular systems is four times larger than the borazine molecular systems. Negative differential resistance behavior is observed with borazine-CN system and the saturation feature appears in BCN systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call