Abstract
In this study, temperature dependent current–voltage (I–V) measurements and investigation of the dc current transport mechanism of Au/poly(4-vinyl phenol)/p-Si device have been performed. While the series resistance value displayed nearly temperature independent behaviour, the ideality factor varied between 7.26 and 2.76 in the temperature range 100–300 K. There is a linear relationship between the barrier height and the ideality factor which is attributed to barrier height inhomogeneities in the Au/poly(4-vinyl phenol)/p-Si device. The temperature dependent ideality factor behaviour shows that thermionic field emission theory is valid rather than thermionic emission theory and the characteristic tunnelling energy is calculated as 65 meV. It is concluded that poly(4-vinyl phenol) is a preferable organic insulator layer with low interface state density because the temperature dependent interface state density calculations give values of the order of 1012 eV−1 cm−2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.