Abstract

For high-temperature JET and TFTR discharges, electron cyclotron emission (ECE) measurements of central electron temperature were systematically found to be up to 20% higher than those taken with Thomson scattering. In recent high-performance JET discharges, central Te measurements, performed with LIDAR Thomson scattering and the X-mode ECE interferometer, have been studied in a large database, including deuterium (DD), and deuterium-tritium plasmas (DT). Discrepancies between Te measurements have been observed outside of the experimental uncertainties. ECE measurements, at high Te, have been found to be higher or lower than those of LIDAR, depending on the specific plasma scenario. In addition, discrepancies between the peaks of the second and third harmonic ranges of the ECE spectrum have been interpreted as evidence for the presence of non-Maxwellian features in the electron distribution function. These comparisons seem to suggest that such features can be found in most of the high-performance scenarios selected in this JET database.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call