Abstract
For high-temperature JET and TFTR discharges, electron cyclotron emission (ECE) measurements of central electron temperature were systematically found to be up to 20% higher than those taken with Thomson scattering. In recent high-performance JET discharges, centralTemeasurements, performed with LIDAR Thomson scattering and the X-mode ECE interferometer, have been studied in a large database, including deuterium (DD), and deuterium-tritium plasmas (DT). Discrepancies betweenTemeasurements have been observed outside of the experimental uncertainties. ECE measurements, at highTe, have been found to be higher or lower than those of LIDAR, depending on the specific plasma scenario. In addition, discrepancies between the peaks of the second and third harmonic ranges of the ECE spectrum have been interpreted as evidence for the presence of non-Maxwellian features in the electron distribution function. These comparisons seem to suggest that such features can be found in most of the high-performance scenarios selected in this JET database.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.