Abstract

In this paper, a novel T-shaped compact Dielectric Resonator Antenna (DRA) is proposed for wide band application. The proposed antenna covers C- and X-band. Two different techniques namely partial ground plane and multi stacked elements have been used in the designing of the proposed antenna to improve the performance of the antenna. It is observed that the air gap between two dielectric materials stacked together in DRA enhances the bandwidth of the antenna. Impedance bandwidth offered is 84% which covers a range from 4.18 to 10.27 GHz (6.09 GHz) for |S11|<-10 dB. The analysis of field lines shows that $$TE_{11\delta}^z$$ mode exists at 5.66 GHz and $$TE_{12\delta}^z$$ mode exists at 9.76 GHz, when it is excited by center probe feed in z direction. Maximum gain achieved over the frequency range is 4.72 dBi at 5.77 GHz and 4.3 dBi at 9.76 GHz. The maximum radiation efficiency is 95% at 5.66 GHz. The proposed antenna is simulated in CST and HFSS softwares and simulated results have been validated through the comparison of the experimental results of a fabricated prototype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call