Abstract

Modern Monte Carlo codes allow for the calculation of ion chamber specific beam quality correction factors kQ, which are needed for dosimetry in radiotherapy. While statistical (type A) uncertainties of the calculated data can be minimized sufficiently, the influence of systematic (type B) uncertainties is mostly unknown. This study presents an investigation of systematic uncertainties of Monte Carlo-based kQ values for a NE2571 thimble ion chamber, calculated with the EGSnrc system. Starting with some general investigation on transport parameter settings, the influence of geometry and source variations is studied. Furthermore, a systematic examination of uncertainties due to cross section is introduced by determining the sensitivity of kQ results to changes in cross section data. For this purpose, single components of the photon cross sections and the mean excitation energy I in the electron stopping powers are varied. The corresponding sensitivities are subsequently applied with information of standard uncertainties for the cross section data found in the literature. It turns out that the calculation of kQ factors with EGSnrc is mostly insensitive to transport settings within the statistical uncertainties of ∼0.1%. Severe changes in the dimensions of the chamber lead to comparatively small, insignificant changes. Further, the inclusion of realistic beam models, delivering a complete phase space instead of simple photon spectra, does not significantly influence the result. However, the uncertainties in electron cross sections have an impact on the final uncertainty of kQ to a comparatively large degree. For the NE2571 chamber investigated in this work, this uncertainty amounts to 0.4% at 24 MV, decreasing to 0.2% at 6 MV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call