Abstract

A water soluble compound named sulfonated melamine formaldehyde (SMF) was synthesized and its corrosion inhibition behavior was studied for carbon steel in 3.5% NaCl solution by polarization measurements and electrochemical impedance spectroscopy (EIS). SMF was characterized with hydrogen nuclear magnetic resonance spectroscopy and then its physical properties and corrosion prevention efficiencies were investigated. The corrosion behavior of SMF was found to be dependent strongly on the electric nature of functional groups which are present in its structure. The decrease in (icorr) and the increase in inhibition efficiency (% IE) with increasing the SMF concentrations proves that it protects C-steel in 3.5% NaCl solution from being corroded and Nyquist diagrams indicate that increasing charge transfer resistance is associated with a decrease in the capacitance and increase in the percentage inhibition efficiency. The decrease in capacitance values could be attributed to the adsorption of the inhibitor molecules at the metal surface by increasing the concentration of inhibitor in the solution the inhibition efficiency increased and the best inhibition was obtained at 1000 ppm inhibitor concentration. The scanning electron microscope was used to investigate the surface morphology of specimens in the absence and presence of inhibitor compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.