Abstract

One of the main energy sources utilized to produce power is coal. Due to the lack of combustion enhancement, the main issue with coal-based power plants is that they produce significant amount of pollutants. The major problem of slagging formation within the boiler; it sticks to the water tube walls, superheater, and reheater. Slagging might decrease the heat transferred from the combustion area to the water or steam inside the tubes, increasing the amount of coal and extra air. The abrupt fall of slag on the tube surface into the water-filled seal-trough at the bottom of the furnace might occasionally cause boiler explosions. In order to maximize heat transmission to the water and steam tubes by reducing or eliminating slag formation on the tube surface, the work presented here proposes an appropriate computational fluid dynamics (CFD) technique with a genetic algorithm (GA) integrated with conventional supercritical power plant operation. Coal usage and surplus air demand are both decreased concurrently. By controlling the velocity and temperatures of primary air and secondary air, the devised technique could optimize the flue gas temperature within the furnace to prevent ash from melting and clinging to the water and steam tube surfaces. Heat transmission in the furnace increased from 5945.876 W/m2 to 87,513.9 W/m2 as a result of the regulated slag accumulation. In addition to reducing CO2 emissions by 8.55 tonnes per hour and saving close to nine tonnes of coal per hour, the boiler’s efficiency increased from 82.397% to 85.104%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call