Abstract
The control of NOx emission from diesel vehicles is of great importance to the environment, and Cu-SAPO-34 is considered to be an effective catalyst for the abatement of NOx from diesel vehicles. Along with catalytic activity, hydrothermal stability is a key property for NOx abatement catalysts. The attack of Cu species and framework atoms by H2O may result in activity loss under both low/high temperature humid conditions, which are inevitable in practical application. Therefore, apart from good catalytic activity, hydrothermal stability under both low/high temperatures for Cu-SAPO-34 is also critical for NOx control in diesel vehicles. Three Cu-SAPO-34 samples were prepared by a one-pot hydrothermal method using propylamine, triethylamine, and morpholine, with Cu-TEPA (tetraethylenepentamine) as the cotemplate. The NH3-SCR activity and the effects of hydrothermal aging at 70 and 800 °C on these Cu-SAPO-34 samples were investigated. The type of cotemplate can affect the Si and Cu species in one-pot-synthesized Cu-SAPO-34 catalysts, so that the catalytic activity as well as the low/high temperature hydrothermal stability is affected by the choice of template. Generally speaking, Cu-SAPO-34 prepared using PA as cotemplate showed superior catalytic activity and hydrothermal stability under low/high temperatures compared with the other two catalysts, which makes PA a more suitable template for one-pot-synthesized Cu-SAPO-34 for use in NOx abatement from diesel vehicle exhaust.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.