Abstract

The HVDC converter control can destabilize torsional modes of nearby turbogenerators. The first experience of HVDC-turbine generator torsional interaction was observed in 1977 during field tests at Square Butte. The development of power semiconductors, specially insulated-gate bipolar transistors and gate turnoff thyristors (GTOs) has led to the small power HVDC transmission based on voltage-source converters (VSCs). The self-commutated VSC-based HVDC installations have several advantages compared to conventional HVDC-based online-commutated current source converter. The main objective of this paper is to investigate and present the detailed analysis of subsynchronous resonance (SSR), arising from a VSC-based HVDC system connected close to generating units. The analysis considers different operating modes of the converters. Based on a case study, it is shown that the dc voltage control mode of VSC operation (rectifier/inverter) close to the generator units can contribute positive damping in the torsional-mode frequency range of interest. The investigations of SSR with VSC-based HVDC is carried out based on linear (damping torque and eigenvalue) analysis and nonlinear transient simulation. While the damping torque, eigenvalue analysis, and controller design are based on the D-Q model, the transient simulation considers the D-Q model and the three-phase detailed model of VSC using switching functions. The influence of the operating modes of the converters and effects of some important parameters, such as effective short circuit ratio and generator rating are investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.