Abstract

Directional solidification of a cast mono silicon seed and of a float-zone (FZ) silicon seed was performed and the grain and defect structures of the seeds as well as of the regrown parts are analyzed. In situ X-ray diffraction imaging enabled the observation of the dislocation arrangements. During the heating process, in the FZ seed, mobile dislocations glide on {111} planes, whereas in the cast mono seed dislocations are arranged in a mainly immobile cellular structure. Ex situ grain orientation mappings reveal the presence of subgrains with misorientations up to 3° in the regrown part of the cast mono-seeded sample, which are not observed in the regrown part of the FZ-seeded sample. Subgrain boundaries characterized by misorientations around the [001] growth axis propagate roughly along the growth axis and increase their misorientation by merging with new subgrain boundaries appearing in their vicinity. Although the first inception of subgrain formation cannot be revealed, the comparison of the dislocation arrangements in the two seeds strongly suggests an influence of the latter on subgrain formation. In the regrown part, interactions between subgrain boundaries and twin boundaries show that they can follow Σ3{111} and Σ9{221} grain boundaries or cross Σ3{111} grain boundaries. Whether Σ3{111} GBs are crossed or not depends among other things on the orientation of the grains on either side of the twin. It demonstrates that the grain orientation relationship and not only the grain boundary character play an important role in the subgrain structure evolution and redistribution in a multicrystalline silicon ingot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.