Abstract
NaCl is plastically anisotropic and forms a well developed substructure during deformation at 0.3-0.5Tm. EBSD was used to assess subgrain misorientations up to 0.5 true strain in dry NaCl. Equiaxed subgrains were ubiquitous but misorientations along segments of subgrain boundaries differed. Three types of subgrain boundary were identified: boundaries that surrounded equiaxed subgrains, boundaries that partly surrounded mantle subgrains, and extended subgrain boundaries, longer than the equiaxed subgrains. All of these subgrain features were recognised at low strains, <0.15. Misorientations of the majority of equiaxed subgrains were generally <2° at 0.5 strain, although segments could reach higher misorientations along kink-like boundaries. Mantle subgrains along grain boundaries tended to develop higher misorientations than in core subgrains. Long subgrain boundaries reached very high misorientations along segments of their length by 0.5 strain. Small new grains formed at triple points and more rarely within grains. Microstructures in NaCl are similar to those found in aluminium. Therefore, the dominant mechanism of high angle subgrain development at 0.5 strain and at 0.4Tm is probably an orientation splitting mechanism rather than equiaxed subgrain rotation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.