Abstract

Casting is a fabrication method used to create various industrial parts with different shapes. Flaws such as shrinkage, porosity, and short metal filling can result in casting rejection. These flaws are heavily reliant on casting parameter design (gating and riser system design) and can be reduced by optimizing the casting parameter design. The development of materials with new or improved properties has long been the primary objective of materials scientists. The designing of metallic alloys for structural purposes must take strength, toughness, and formability into account to achieve the desired performance. The unique convergence of these essential characteristics that characterize high manganese steels fascinate scientists worldwide. The current work systematically investigated a gating system and riser design effect for high Manganese steel samples (bushes) to develop an understanding of the structure–property relationship. The first conventional manual calculation was performed to design the gating and riser system. Subsequently, a sophisticated simulation software called SolidCast was used to design, validate, and improve the casting parameters of the specimen. To back up the findings, confirmatory experiments were carried out. Both designs were used to make castings in order to check for flaws. The microstructural and mechanical characteristics of these materials were investigated. Visual inspection of the manually-designed castings revealed considerable shrinkage, whereas software-designed castings seemed in good shape, without the shrinkage, macroporosity, and microporosity. The microstructure of the specimens was also studied by applying optical microscopy and SEM analysis. By improving the gating and riser system with the SolidCast software, sound casting was achieved. This improved the quality of casting results with a considerable enhancement of yield strength (~32 percent), hardness (~34 percent), and tensile strength (~27 percent), which may lead to significant cost savings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call