Abstract

In this work, we investigated an organic semiconductor based on zinc 8-hydroxyquinoline (ZnQ2) and tetracyanoquinodimethane (TCNQ), which can be used as a photoactive layer in organic devices. The semiconductor was optimized by applying density-functional theory (DFT) methods, and four hydrogen bridges were formed between ZnQ2 and TCNQ. Later, thin films of ZnQ2-TCNQ were successfully deposited. The films were structurally and morphologically characterized, and the optical characteristics of the photoactive layer were investigated using ultraviolet–visible spectroscopy and time-dependent density-functional theory (TDDFT) calculations. The comparison and analysis of the experimental and theoretical absorption spectra indicate that the optical bandgap of the photoactive layer is 2.4 eV. Additionally, a flexible photo device was manufactured with the active layer ZnQ2-TCNQ, and its electrical behavior was evaluated under dark and light conditions. The results show a significant change in the behavior of the device when radiation is eliminated; the layer is light sensitive. The electrical resistance in the flexible photo device is associated with the optical behavior of the materials that constitute the active layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.