Abstract

The X-ray diffraction (XRD) spectrum of the nano-ZrO2compound was drawn, the crystal structure was determined at room temperature and under normal conditions. Radiation-thermal decomposition of water on nanosized ZrO2in the temperature range of [Formula: see text]–673 K has been studied by Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. It has been shown that nanosized zirconium dioxide adsorbs water via the molecular and dissociative mechanisms. Intermediate products of the radiation-induced heterogeneous decomposition of water, namely, the molecular oxygen and hydrogen peroxide radical ions, zirconium hydride, and hydroxyl radicals have been detected. A comparative analysis of changes in the absorption bands (ABs) of molecular water and surface hydroxyl groups with temperature has been conducted, and the stimulating role of radiation in the radiation-thermal process of water decomposition has been revealed. With the participation of nano-ZrO2during the radiation-heterogeneous decomposition of water to reveal the role of unbalanced cargo carriers that play the role of energy carriers under the influence of gamma-quantities in nano-ZrO2and nano-[Formula: see text] systems paramagnetic centers, their origin and acquisition kinetics learned by the EPR method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.