Abstract

(Co,Cr)-codoped zinc oxide thin films (ZnO:Cr:Co) at different percentages (0%, 1–1%, 1–2%, 2–1%) were deposited on glass substrates using a chemical low-cost spray technique. The effect of Cr and Co concentration on the structural, morphological and optical properties of the ZnO:Cr:Co thin films were investigated by means of X-ray diffraction, optical measurement, contact Atomic Force Microscopy (AFM), and Photoluminescence spectroscopy. The results revealed that all films consist of single phase ZnO and were well crystallized in würtzite phase with the crystallites preferentially oriented towards (002) direction parallel to c-axis. Also, the co-doping has effective role in the enhancement of the crystallinity and leads to an improvement of roughness of the ZnO films. Doping by chrome and cobalt resulted in a slight decrease in the optical band gap energy of the films. The optical band gap of these films is calculated. The optical absorption spectra show that the absorption mechanism is a direct transition. The UV peak positions for ZnO:Cr:Co samples slightly red shift to the longer wavelength in comparison with the pure ZnO which can be attributed to the change in the acceptor level induced by the substitutional Co2+ and Cr3+ and the band-gap narrowing of ZnO with the Cr and Co dopants. The Lattice Compatibility Theory analyses have been applied in order to give original, plausible and founded explanation to the recorded preferential incorporation of cobalt ions within ZnO lattice over chromium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.