Abstract

We investigated the ambient temperature structural properties (thickness, width, microstructure, and lattice parameter), and the ambient and high temperature (up to 900 K) direct current (DC) magnetic properties—saturation magnetization (MS) and intrinsic coercivity (HCI)—of rapidly-solidified (melt-spun) Fe-x wt.% Si (x = 3, 5, & 8) alloys. The wheel surface speeds selected for the study were 30 m/s and 40 m/s. The ribbons produced at the lower wheel surface speed (30 m/s) were continuous having relatively uniform edges compared to the ribbons produced at the higher wheel surface speed. The thickness and the width of the melt-spun ribbons ranged between ∼15 and 60 μm and 500–800 μm, respectively. The x-ray diffraction spectra of the melt-spun ribbons indicated the presence of disordered α-phase, irrespective of the composition, and the wheel surface speed. The lattice parameter decreased gradually as a function of increasing silicon content from ∼0.2862 nm (Fe-3 wt.% Si) to ∼0.2847 nm (Fe-8 wt.% Si). The wheel surface speed showed an insignificant effect on MS while increased silicon content resulted in a decreasing trend in MS. Elevated temperature evaluation of the magnetization (M-T curves at ∼7.96 kA/m) in the case of Fe-3 & 5 wt.% Si alloy ribbons was distinctly different from that of the Fe-8 wt.% Si alloy ribbons. The curves of the as-prepared Fe-3 wt.% Si and Fe-5 wt.% Si alloy ribbons were irreversible while that of Fe-8 wt.% Si was reversible. The MS for any of the combinations of wheel surface speed and composition decreased monotonically with the increase in temperature (from 300 to 900 K). While HCI increased with the increase in temperature for all the wheel surface speed and composition combination, its nature of increase is distinct for Fe-8 wt.% Si alloy ribbons compared to Fe-3 & 5 wt.% Si alloys ribbons. It appears that rapidly-solidified Fe-3 wt.% Si and Fe-5 wt.% Si alloys ribbons are primarily comprised of the α-phase (disordered phase) while the Fe-8 wt.% Si alloy ribbons are comprised primarily of disordered phase along with minor constituents of an ordered phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.