Abstract
The excellent properties of carbon nanotubes have generated technological interests in the development of nanotube/rubber composites. This paper describes a finite element formulation that is appropriate for the numerical prediction of the mechanical behavior of rubber-like materials which are reinforced with single walled carbon nanotubes. The considered composite material consists of continuous aligned single walled carbon nanotubes which are uniformly distributed within the rubber material. It is assumed that the carbon nanotubes are imperfectly bonded with the matrix. Based on the micromechanical theory, the mechanical behavior of the composite may be predicted by utilizing a representative volume element. Within the representative volume element, the reinforcement is modeled according to its atomistic microstructure. Therefore, non-linear spring-based line elements are employed to simulate the discrete geometrical structure and behavior of the single-walled carbon nanotube. On the other hand, the matrix is modeled as a continuum medium by utilizing solid elements. In order to describe its behavior an appropriate constitutive material model is adopted. Finally, the interfacial region is simulated via the use of special joint elements of variable stiffness which interconnect the two materials in a discrete manner. Using the proposed multi-scale model, the stress–strain behavior for various values of reinforcement volume fraction and interfacial stiffness is extracted. The influence of the single walled carbon nanotube addition within the rubber is clearly illustrated and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.