Abstract

Nuclear magnetic resonance (NMR) is widely used to characterize the pore structure of rock. The nanoscale pores and fractures are well developed in a shale gas reservoir. The closure of nanopores caused by the increase in effective stress during the gas production process could induce stress sensitivity in shale nanopores, which has a great impact on the single-well productivity in the middle–late development stage. In this paper, shale samples from the Longmaxi Formation were taken to investigate the nanopore stress sensitivity via an NMR method. Samples with different degrees of pore and fracture development were selected and NMR experiments under different effective stress conditions were carried out. The results show that: (1) As the effective stress increases, the pore space in shale is continuously compressed, and the cumulative pore volume of shale decreases; (2) There is a more pronounced decrease in the cumulative pore volume of samples containing larger pores with the increase in effective stress. However, there are obvious differences in the pore volume changes in different pore sizes; (3) The transformation of nanopores of different sizes occurs in the process of effective stress loading. When the effective stress is small, the pores with diameters larger than 50 nm are mainly transformed to those with diameters of 10–50 nm. When the effective stress increases to a certain extent, the pores with diameters of 10–50 nm are mainly transformed to those with diameters of 0–10 nm; (4) There are significant differences in the compressibility of nanopores of different sizes. Larger nanopores generally have a higher compression coefficient and a stronger stress sensitivity. In the process of effective stress loading, the compression coefficient of pores with diameters between 10 and 50 nm changes relatively slowly, which can well-maintain the pore shape and quantity. Based on the variation in porosity ratio with effective stress, a new method of dividing shale nanopores is proposed; those with diameters smaller than 10 nm, those with diameters of 10–50 nm, and those with diameters larger than 50 nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call