Abstract

This work aims at establishing the effect of stress and temperature on the velocity of ultrasonic longitudinal waves in typical engineering polymers, and evaluating the potential of ultrasonic stress measurement in the evaluation of residual stresses in polymer parts. In order to estimate the effect of material morphology, two amorphous and two semicrystalline polymers have been considered. A series of tests are implemented, to determine the acoustoelastic constants and temperature constant of materials, by using the designed transducer fixtures for in situ measurement of longitudinal wave velocity. As expected, the velocity changes linearly with stress and temperature, and the temperature effect is as important as the acoustoelastic effect. It shows that this kind of nondestructive method is a valuable quantitative tool to estimate the residual stress in polymer products, but the material temperature influence must be considered during the estimation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call