Abstract
The composite material obtained by blending cement, aggregate, water and, when necessary, an additive, placing a mixture with carefully adjusted proportions into molds of the desired shape and size without gaps and hardening under appropriate maintenance conditions, is called concrete or traditional concrete. In the 1960s, concretes with compressive strengths of 41 MPa and 52 MPa were used on the market in the USA. In the recent past, concretes with compressive strengths varying between 80 MPa and 100 MPa have been commercially applied in structures made with in-situ concrete and prestressed concrete structural elements. Strength developments of traditional and high-strength concretes under different curing conditions will be examined. For this purpose, central pressure tests were carried out on cube samples produced. For concrete production; For each aggregate class, cement, saturation water, mixed water and high strength concretes; It was prepared by weighing silica fume and superplasticizer. The prepared samples were stored in standard or cold water for 3 days, 7 days, 28 days and 90 days. In this study, the strength development of traditional and high-strength concretes under different curing conditions was examined experimentally. In accordance with the experimental work plan determined for this investigation, concrete cube samples were produced and these samples were subjected to the central pressure test. The concretes produced are in C55, C20 and C12 classes. As a result, although similar behaviors were observed in high-strength and conventional concretes cured in different environments, it was determined that the difference in curing temperature was more effective on the strength development than the inadequacy of curing in water. It should be noted here that it would be beneficial to conduct similar studies on different types of concrete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.