Abstract
Natural circulation is one of the most important mechanisms of passive safety systems in the advanced NPP design. By using RELAP5, steady-state behaviors of a typical natural circulation loop (NCL) were investigated. The Influences of various system parameters, such as pressure, cooling heat transfer area and loop height were studied. The results show that the heat transfer power of the NCL (i.e. the heat transferred from the heater to the tank by NCL) is linear with respect to the temperatures of boundary heat source and sink, excluding the phase transition region. The NCL operation mode (i.e. two-phase flow or one-phase flow) is mainly determined by the loop pressure. It is found that with the decrease of the pressure, the two-phase flow operation range is widened. The heat transfer power of two-phase flow case is always higher, and varies more substantially with pressure, than that of one-phase flow case under the same boundary temperatures. However, flow instability may occur for two-phase flow case. By increasing the area of heat transfer surface between loop cooling section and tank, the temperature difference between the inlet and the outlet of loop heating section as well as the heat transfer power of the NCL will increase. But the influence is insignificant when the tank temperature is relatively high. It is also observed that for both one-phase flow and two-phase flow, the change of loop height has little effect upon the heat transfer power of the NCL under the given boundary condition in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.