Abstract
Slope failures along a bedding plane were critical issues and mostly happened in an open pit mining project such as the Mae Moh Mine, Thailand. The prediction of maximum width to maintain stable slope after an excavation process is required. This paper presents an investigation of 3D finite element analysis for the stability and failure mechanism of undercut slopes resting on a low interface friction plane. In numerical models, the soil slope was modeled as volume elements with the hardening soil material. Interface elements were used at the bottom plane to simulate the low interface friction plane and at the side support to simulate fully rough surface for the models with side supports. Stage analyses in numerical models were performed following excavation processes in physical models until failure. The effects of the side support and the slope length to increase the stability of undercut slopes were considered. Failure widths, failure mechanisms, and stress distributions associated with slope angles and boundary conditions of side support were discussed and compared.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.