Abstract
Abstract Currently, graphite is used for anodes of the lithium ion battery. The higher capacity of a battery with the lithium alloy anode requires the development of a larger theoretical electrochemical capacity than graphite. Silicon is a promising anode material, having a theoretical capacity more than 10 times that of the graphite used in these lithium alloy batteries. There are two common methods of fabricating silicon anodes: direct deposition techniques such as electron beam deposition and sputtering; and slurry coating of silicon particles with a binder. Alternative methods are being investigated. One of such methods is cold spray. In this study, numerical simulation of, and experiments investigating, cold spray conditions and the performances of cold-sprayed silicon anodes are presented. Silicon was cold-sprayed on copper foil substrates using three different starting materials (with particle sizes of 4.65 µm, 6.74 µm and 9.63 µm). First cycle efficiency was about 90%. Charge capacity initially improves with cycling (up to the 10th cycle). This is probably due to better electrolyte soaking during the first several cycles. A decrease in charge capacity is observed upon further cycling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.