Abstract

To explore the details of the reaction mechanisms of Zr atoms with acetonitrile molecules, the triplet and singlet spin-state potential energy surfaces have been investigated. Density functional theory (DFT) with the relativistic zero-order regular approximation at the PW91/TZ2P level has been applied. The complicated minimum energy reaction path involves four transition states (TS), stationary states 1-5 and one spin inversion (indicated by ⇒): (3)Zr + NCCH(3) → (3)Zr-η(1)-NCCH(3) ((3)1) → (3)TS(1/2) → (3)Zr-η(2)-(NC)CH(3) ((3)2) → (3)TS(2/3) → (3)ZrH-η(3)-(NCCH(2)) ((3)3) → (3)TS(3/4) → CNZrCH(3) ((3)4) ⇒ (1)TS(4/5) → CN(ZrH)CH(2) ((1)5). The minimum energy crossing point was determined with the help of the DFT fractional-occupation-number approach. The spin inversion leading from the triplet to the singlet state facilitates the activation of a C-H bond, lowering the rearrangement-barrier by 78 kJ/mol. The overall reaction is calculated to be exothermic by about 296 kJ/mol. All intermediate and product species were frequency and NBO analyzed. The species can be rationalized with the help of Lewis type formulas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.