Abstract

Nonlinear phonon relaxation in Yb:YAG gain media has previously been investigated, and a hypothesis correlating photo-induced free electrons and heat generation in crystals pumped at a wavelength of 940 nm was established (Brandt et al 2011 Appl. Phys. B 102 765–8). Later, we demonstrated efficient suppression of nonlinear phonon relaxation by zero-phonon line (ZPL) pumping of Yb:YAG (969 nm). However, no hypothesis has yet been tested that correlates the heat load and the free electrons in Yb:YAG media. We investigate, both theoretically and experimentally, the behaviour of an Yb:YAG slab pumped by a high-power laser diode at a conventional broadband line (absorption maximum at 941 nm) and a ZPL (absorption maximum at 969 nm), and we compare the generated photocurrent, temperature, and absorbed pump power for those two pump wavelengths. Although the hypothesis established by Brandt et al (2011 Appl. Phys. B 102 765–8) was not confirmed, and the measured photocurrent was identical for the two pump wavelengths, our measurement contributes to the knowledge of the inner processes in Yb:YAG active media. In the following steps we characterized an Yb:YAG thin disk laser, measured the spectrally-resolved absorption and disk surface temperature, and optimised our predictive model of thin disk behaviour. All the experimental and theoretical results are reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.