Abstract

Four simple, rapid, accurate and precise spectrophotometric methods were established and validated in accordance with ICH Q2 (R1) guidelines for the simultaneous determination of Vancomycin (VNC) and Ciprofloxacin (CPR) in their raw materials, laboratory prepared mixtures and pharmaceutics. Method A depends on using first derivative spectrophotometry (D1) where VNC and CPR were resolved at 243.6 and 262.0 nm, respectively. Concerning method B, it is based on utilizing first derivative of ratio spectra (DD1) where determination was performed at the peak maxima at 244.0 nm and 258.0 nm for VNC and CPR, respectively. Two chemometric models were applied for the quantitative analysis of both drugs in their laboratory prepared mixtures, namely, partial least squares (PLS) (method C) and artificial neural network (ANN) (method D). For univariate methods linearity range for both drugs was in the range of 3–30 and 1–10 μg/mL for VNC and CPR, respectively. Multivariate calibration methods using five level, two factor calibration model for the development of 25 mixtures were also applied for the simultaneous estimation of the two drugs in their laboratory prepared mixture using spectral region from 200.0 to 300.0 nm using interval 1 nm. The suggested methods have been successfully extended to the assay of the two studied drugs in laboratory-prepared mixtures and pharmaceuticals with excellent recovery. First derivative spectrophotometry (D1) was also applied for the assay of both analytes in spiked human plasma with good recovery. No interaction with common pharmaceutical additives has been observed which indicate the selectivity of the method. The results obtained were favourably compared with those obtained applying the reported methods. The methods are validated in compliance with the ICH Q2 (R1) guidelines and the measured accuracy and precision are assessed to be within the accepted limits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.